## Team NAIST-Panasonic



#### **NAIST**

- Dr. Gustavo Garcia, Captain
- Lotfi El Hafi, D3
- Felix von Drigalski, D3
- Wataru Yamazaki, D2
- Viktor Hoerig, D2
- Arnaud Delmotte, D1
- Akishige Yuguchi, D1
- Marcus Gall, M2
- Chika Shiogama, M2
- Kenta Toyoshima, M2
- Pedro Uriguen, M2
- Rodrigo Elizalde, M1

#### **Panasonic**

- Dr. Masaki Yamamoto
- Yasunao Okazaki
- Kazuo Inoue
- Katsuhiko Asai
- Ryutaro Futakuchi
- Seigo Okada
- Yusuke Kato
- Pin-Chu Yang



Team **NAIST-Panasonic** = 20 Members



## Outline



- Lessons from the past
- New challenges
- Suction force analysis
- Storage system
- Conclusion





# Lessons from the past



## Failures examples

商品を仕分けろ! 頂上対決 「やさしいロボ」は世界に通じるか?





プロフェッショナル
仕事の流儀

Unexpected collision





Grasping approach



Item loss



## Failures and potential impact



| Failure                         | Potential impact                   |
|---------------------------------|------------------------------------|
| Collision with storage system   | Round loss                         |
| Planning failure                | Round loss                         |
| Items left on recognition space | Object recognition capability loss |
| Losing suction contact          | Point loss due to dropped item     |
| Two-item grasping               | Point loss due to lost item        |
| Object recognition errors       | Point loss due to misplaced item   |
| Grasping failures               | Time loss                          |
| Slow path-planning              | Time loss                          |



## Lessons from the past



#### **Hardware**

- One 7-DOF manipulator can suffice
- 7-DOF can be faster than 6-DOF manipulator (shorter joint space distance)
- Suction tool worked for 80% of the items
- Professional suction system needed for reliability
- Sensor stability issues possible

#### **Software**

- Learning-based object recognition has high success rate
- Depth information may not improve object recognition
- Illumination significantly affects object recognition (RSJ review)
- Datasets can be used (Team C^2M, Team R U Pracsys, Team MIT-Princeton)
- Movelt planning speed can be prohibitive

#### **Strategy & Workflow**

- Failures are unavoidable
   → Error recovery is essential
- State machines effective for task planning (Team Delft)
- Do not modify the code in the last minute (!)





# New challenges



## New Challenges in ARC 2017



- Half of items unknown until 30 min. before round
  - Too short to gather data and train
- New design dimension: Storage system
  - Storage system can be adapted to robot
- Storage system volume significantly reduced
  - 30% (!) of previous years'
  - Increased occlusions and stacked items

#### Our requirements:

- Object recognition using pictures and models supplied by Amazon (not only learning-based methods)
- Maximize surface of storage system to minimize clutter
- Catch and fix errors during the round to compensate for uncertainty





# Suction force analysis





## Suction tool model





$$F = \Delta p * (A_{p} - A_{o})$$

Perfect contact:  $A_0 = 0$ 

No contact:  $A_0 = A_p$ 

*Q*: flow rate

 $p_{\rm a}$ : atmospheric pressure

 $p_s$ : internal static pressure

L: tube length

 $A_t$ ,  $d_t$ : tube cross section area / diameter

 $A_{\rm p},\,d_{\rm p}$ : suction cup cross section area / diameter

 $\vec{A}_{\rm o}, \vec{d}_{\rm o}$ : opening cross section area / diameter





## Suction force











## Suction tests







#### With d l p = 40 mm and d l t = 30 mm:

- 36 items can be suctioned (90%)
- 9 items can be potentially damaged (22.5%)

#### Successfully suctionable items include:

- Marbles
- Measuring spoons
- Bath sponge
- Dumbbell (with a lot of luck)

#### Unsuccessful:

- Mesh cup
- Brush
- Scissors





# Storage system



## Storage System



#### Rules:

- 2-10 bins
- 95,000 cm<sup>3</sup> bounding box
- Up to 32 items
- Max: 42 x 27 x 14 cm
- No actuators
- Sensors < 50 USD</li>





Volume is 30% of previous years!



# Storage System Design



#### Original design:

- As shallow as possible
- Easy to change bin sizes
- Many partitions to increase available surface
- → Maximize used volume, minimize clutter





**v**1

v2 (after item size increase)



# Storage System Loading test







Still too cluttered!





## Conclusion



## Conclusion



- Systematic listing of potential failures and their impact
- Summarized good practices, heuristics and data from the past
- Showed the importance of storage density
- Suction force analysis and tests
  - → Larger hose diameters and flow stabilize suction contact







### Thank you for your attention



See you in Nagoya!

