A research of autonomous loading / unloading of consumer products using a dual-arm robot

Hiroaki Yaguchi, Shintaro Hori, Kazuhiro Sasabuchi, Kotaro Nagahama, Masayuki Inaba
The AA-Team (APC2016)
The University of Tokyo

http://www.jsk.t.u-tokyo.ac.jp/
Towards Easy-to-use, Robust robot platform
Loading Task in Warehouse
Amazon Picking Challenge 2016

- x5, Stowing pet-food bowl and brush
Unloading Task in Warehouse
Amazon Picking Challenge 2016

- x5, Picking gloves

http://www.jsk.t.u-tokyo.ac.jp/
Loading Task in Convenience Store
Japan Robot Week 2016

- x6, 461/518 picking and 453/471 placing for 8 hours x 3 days

http://www.jsk.t.u-tokyo.ac.jp/
Problem: How to manage consumer products?

- Amazon Picking Challenge, RoboCup@Home, World Robot Summit, etc...
- Handling various objects in various domains
 - Warehouse, Home, Convenience Store...

http://www.jsk.t.u-tokyo.ac.jp/
Configuration of Loading / Unloading Task

Warehouse (APC2016)
- Many Categories
- High Workspace
- Cluttered Goal

Store (JRW2016)
- Multiple Objects
- Sorted Goal
- Low Workspace

Differences: change hardware configuration
Commons: make framework
Dual-arm robot AERO

- Using different lower body and end effectors for each different situations
System Structure of AERO

- All actuators are connected via CAN bus using 4-pin connectors
 - Smart actuator: with motor driver and communication board
 - Easy to replace end-effectors
- Completely separated upper / lower body
 - Easy to replace body part

http://www.jsk.t.u-tokyo.ac.jp/
Common Solution of Loading / Unloading Task

- Object Recognition: Classify What, where it is
- Localization: Where to move, Where to place
- Planning: How to pick, move, and place

http://www.jsk.t.u-tokyo.ac.jp/
Warehouse Task
Amazon Picking Challenge 2016

- Motivation: to Handle various objects by our robot system
 - Small body
 - Simple gripper and external vacuum

- Solution: Fully Model-based Planning
 - 3D geometrical model using EUSLISP
 - Classifier using cloud service

http://www.jsk.t.u-tokyo.ac.jp/
Object Segmentation (Stow task)

- Super Pixel segmentation for 3D image
 - each super pixel are grouped using normal
- Robot tries to grasp center of top side region

Warehouse

Input 3D Image

Normal Estimation

Connected super pixel using normal image

Extract top side region

http://www.jsk.t.u-tokyo.ac.jp/
Object Recognition (Pick task)

- Segmentation: same as the stow task
- Classification: using Microsoft Azure Cloud based on COCO dataset
 - Classifier does NOT return object itself but returns COCO’s 80 categories
 - ex) bear: “brown”, “teddy”, “bear”...
Geometrical Modeling for grasp planning

- Classify 38 categories by shape manually
 - Box: 18
 - Cylinder: 8
 - Ball: 1
 - Complex: 7
 - Deformable: 4
- Define grasp pattern for each object shape

Warehouse

All Objects

Geometrical Models using EUSLISP

Cylinder: Arrowing rotation by center axis

Box: Arrowing rotation at contact point

Thin Object: Contact suction cup vertically to wide plane

http://www.jsk.t.u-tokyo.ac.jp
Collision Avoidance to Shelf

- 3D geometrical model of Kiva pod is also created in EUSLISP
- Collision check is applied for each plates
 - when collision detected, change waist position to opposite direction

http://www.jsk.t.u-tokyo.ac.jp/
Convenience Store Task
Japan Robot Week 2016

- Motivation: to sort multiple objects
 - long-term test
 - for 8 hours, continuously
 - total 24 hours

- Solution:
 - Model-less planning
 - Model-less recognition
Localization

To localize robot position, recognize shelf plane and edge from 3D point cloud

- direction is detected by plane segmentation
- position is estimated by edge

Warehouse

Model-based (for short distance)

Detect edge points

Vote up points

Set shelf edge

http://www.jsk.t.u-tokyo.ac.jp/
Empty place finder

- Sorting objects facing front side
- Finding empty region to place
 - No information about placed objects
 - Object independent solution using saliency map

Input Image

Crop bin region

Calc Saliency from RGB

Saliency Map

Clustering

Reject small / far clusters

Grid mapping

Occupancy Grid

Calc X distance of regions

Empty Region

Store

http://www.jsk.t.u-tokyo.ac.jp/
Grasp planning using shape

Object classification is based on aspect ratio (width and height)

To absorb misalignment, pushing bottom face to shelf plate
- misalignment is caused by diff of cog and recognized position

Pushing motion increases successful rate from 81% to 93%.

Grasp and Place planning

Without pushing With pushing
Conclusion

- We defined loading / unloading task and propose its solutions with different 2 configurations.
- It is most important to choose solution can adopt new scenes with low cost.
 - In APC2016 we implemented object models one by one and spent much time.
 - Reflectively, in JRW2016 we choose model-less solution.
- Next Challenge: to handle Fragile Objects
 - World Robot Summit 2020